9 research outputs found

    Efficiency of texture image enhancement by DCT-based filtering

    Get PDF
    International audienceTextures or high-detailed structures as well as image object shapes contain information that is widely exploited in pattern recognition and image classification. Noise can deteriorate these features and has to be removed. In this paper, we consider the influence of textural properties on efficiency of image enhancement by noise suppression for the posterior treatment. Among possible variants of denoising, filters based on discrete cosine transform known to be effective in removing additive white Gaussian noise are considered. It is shown that noise removal in texture images using the considered techniques can distort fine texture details. To detect such situations and to avoid texture degradation due to filtering, filtering efficiency predictors, including neural network based predictor, applicable to a wide class of images are proposed. These predictors use simple statistical parameters to estimate performance of the considered filters. Image enhancement is analysed in terms of both standard criteria and metrics of image visual quality for various scenarios of texture roughness and noise characteristics. The discrete cosine transform based filters are compared to several counterparts. Problems of noise removal in texture images are demonstrated for all of them. A special case of spatially correlated noise is considered as well. Potential efficiency of filtering is analysed for both studied noise models. It is shown that studied filters are close to the potential limits

    Morphological Transform for Image Compression

    No full text
    A new method for image compression based on morphological associative memories (MAMs) is presented. We used the MAM to implement a new image transform and applied it at the transformation stage of image coding, thereby replacing such traditional methods as the discrete cosine transform or the discrete wavelet transform. Autoassociative and heteroassociative MAMs can be considered as a subclass of morphological neural networks. The morphological transform (MT) presented in this paper generates heteroassociative MAMs derived from image subblocks. The MT is applied to individual blocks of the image using some transformation matrix as an input pattern. Depending on this matrix, the image takes a morphological representation, which is used to perform the data compression at the next stages. With respect to traditional methods, the main advantage offered by the MT is the processing speed, whereas the compression rate and the signal-to-noise ratio are competitive to conventional transforms

    Is Texture Denoising Efficiency Predictable?

    No full text
    Images of different origin contain textures, and textural features in such regions are frequently employed in pattern recognition, image classification, information extraction, etc. Noise often present in analyzed images might prevent a proper solution of basic tasks in the aforementioned applications and is worth suppressing. This is not an easy task since even the most advanced denoising methods destroy texture in a more or less degree while removing noise. Thus, it is desirable to predict the filtering behavior before any denoising is applied. This paper studies the efficiency of texture image denoising for different noise intensities and several filter types under different visual quality criteria (quality metrics). It is demonstrated that the most efficient existing filters provide very similar results. From the obtained results, it is possible to generalize and employ the prediction strategy earlier proposed for denoising techniques based on the discrete cosine transform. Accuracy of such a prediction is studied and the ways to improve it are considered. Some practical recommendations concerning a decision to undertake whether it is worth applying a filter are given.publishedVersionPeer reviewe

    Hand Movement Classification Using Burg Reflection Coefficients

    No full text
    Classification of electromyographic signals has a wide range of applications, from clinical diagnosis of different muscular diseases to biomedical engineering, where their use as input for the control of prosthetic devices has become a hot topic of research. The challenge of classifying these signals relies on the accuracy of the proposed algorithm and the possibility of its implementation in hardware. This paper considers the problem of electromyography signal classification, solved with the proposed signal processing and feature extraction stages, with the focus lying on the signal model and time domain characteristics for better classification accuracy. The proposal considers a simple preprocessing technique that produces signals suitable for feature extraction and the Burg reflection coefficients to form learning and classification patterns. These coefficients yield a competitive classification rate compared to the time domain features used. Sometimes, the feature extraction from electromyographic signals has shown that the procedure can omit less useful traits for machine learning models. Using feature selection algorithms provides a higher classification performance with as few traits as possible. The algorithms achieved a high classification rate up to 100% with low pattern dimensionality, with other kinds of uncorrelated attributes for hand movement identification
    corecore